Processing math: 100%

Pythagoras Theorem

Theorem: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Method 1: By similarity:

Prerequisites:
Similarity of triangles (definition)
AA similarity (proof)

Proof:

Let \triangle ABC be a right triangle, right angled at B. Let us draw an altitude from vertex B to the line AC, meeting AC at a point D.

Now, in \triangle ADB and \triangle ABC,

\qquad\quad\:\!\angle A = \angle A\qquad\qquad\qquad\qquad\quad\:\text{(common)}\\ \qquad\quad\angle ADB = \angle ABC = 90^o\\ \therefore\quad\;\;\;\triangle ADB\sim\triangle ABC\qquad\qquad\qquad\text{(by AA similarity rule)}

Since, by definition of similar triangles, corresponding sides of similar triangles are proportional,

\therefore\quad\;\;\dfrac{AD}{AB} = \dfrac{AB}{AC}\\[12pt] \Rightarrow\quad\;\; AB^2 = AD \times AC\qquad\qquad\qquad\cdots\text{(1)}

Similarly, from \triangle BDC and \triangle ABC,

\qquad\quad BC^2 = DC \times AC\qquad\qquad\qquad\cdots\text{(2)}

Adding (1) and (2),

\qquad\quad\begin{align} AB^2 + BC^2 &= AD\times AC + DC\times AC\\ &= (AD + DC)\times AC\\ &= AC\times AC\\ &= AC^2\end{align}

Q.E.D.


Method 2: By Area:

Prerequisites:
Square (definition)
Area of square (proof)
Area of right triangle (proof)
SAS congruence (proof)
Angle sum property of triangle (proof)
Angle on a straight line (proof)
(a+b)^2 = a^2 + b^2 (proof)

Proof:

Let ABCD be a square having side length equal to (a+b). Let us locate the points E, F, G and H on the lines AB, BC, CD and DA respectively, such that AE = BF = CG = DH = a. Join EF, FG, GH and HE by straight lines, as shown in the figure.

Let  \angle AEH = \theta, then by angle sum property of a triangle,

\qquad\quad\begin{align}\angle AHE &= 180^o - \angle A - \angle AEH\\ &= 180^o - 90^o - \theta\\ &= 90 -\theta\qquad\qquad\qquad\qquad\cdots\text{(1)}\end{align}

Now, in \triangle HAE and \triangle EBF,

\qquad\quad AE = BF = a\qquad\qquad\qquad\text{(by construction)}\\ \qquad\quad AH = BE = b\qquad\qquad\qquad\text{(by construction)}\\ \qquad\quad\angle A = \angle B = 90^o\qquad\qquad\quad\:\!\text{(by definition of square)}

Hence, \triangle HAE\cong\triangle EBF by SAS rule.

Thus, by CPCTC,

\qquad\quad\angle BEF = \angle AHE = 90^o - \theta\qquad\qquad\qquad\text{(from $(1)$)}\\ \begin{align}\therefore\quad\;\;\;\angle HEF &= 180^o - \angle AEH - \angle BEF\qquad\quad\text{($\because$ AB is a straight line)}\\ &= 180^o - \theta - (90^o - \theta)\\ &= 90^o\qquad\qquad\qquad\qquad\qquad\qquad\;\cdots\text{(2)}\end{align}

Similarly, all the four triangles, i.e.,  \triangle HAE,\;\triangle EBF,\;\triangle FCG  and  \triangle GDH are congruent. Thus, by CPCTC,  \angle HEF, \; \angle EFG,\; \angle FGH  and  \angle GHE  are equal and, from (2), are equal to 90^o. Also,  EF = FG = GH = HE = c (say). Hence, EFGH is a square (see definition of a square).

Further, since these four triangles are congruent, they have same area.

Now, let us find the area of the square ABCD:

\qquad\quad \text{Area of }\; ABCD = \text{Area of } \;EFGH + ar (\triangle HAE) + ar (\triangle EBF)+ ar (\triangle FCG) \\ \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad + ar (\triangle GDH)\\ \Rightarrow\quad\;\; (a+b)^2 = c^2 + 4\times\frac{1}{2} ab\qquad\qquad\;\text{(by formula for area of square and right triangle)}\\ \Rightarrow\quad\;\; a^2 + b^2 + 2ab = c^2 + 2ab\qquad\qquad\text{($\because\;\;(a+b)^2 = a^2 + b^2 + 2ab$)}\\ \Rightarrow\quad\;\; a^2 + b^2 = c^2\qquad\qquad\qquad\qquad\quad\;\;\cdots\text{(3)}

Since, a and b are chosen arbitrarily, hence the result of equation (3) holds for all right triangles.

Q.E.D.

No comments:

Post a Comment