Prerequisites:
Pythagoras theorem (proof)
SSS congruence (proof)
Proof:
Let there be a $\triangle ABC$, such that:
$\qquad\quad AB^2 + BC^2 = AC^2$
We need to prove that $\triangle ABC$ is a right triangle. For this, we construct a right triangle $\triangle PQR$, right angled at Q, such that PQ $=$ AB and QR $=$ BC.
Since, $\triangle PQR$ is a right triangle, hence by using pythagoras theorem, we get:
$\qquad\quad PQ^2 + QR^2 = PR^2\\
\Rightarrow\quad\;\; AB^2 + BC^2 = PR^2\qquad\qquad\qquad\text{(by construction)}\qquad\qquad\!\cdots\text{(1)}$
But, $\quad AB^2 + BC^2 = AC^2\qquad\qquad\qquad\text{(given)}\qquad\qquad\qquad\qquad\;\cdots\text{(2)}$
From $(1)$ and $(2)$,
$\qquad\quad PR^2 = AC^2\\
\Rightarrow\quad\;\; PR = AC$
Also, since PQ $=$ AB and QR $=$ BC by construction, hence by SSS congruency rule,
$\qquad\quad\triangle ABC\cong\triangle PQR$
$\Rightarrow\quad\;\;\angle B = \angle Q$
But, $\quad\angle Q = 90^o$
$\therefore\quad\;\;\;\angle B = 90^o$
Thus, $\triangle ABC$ is a right triangle, right angled at B.
Q.E.D.
No comments:
Post a Comment