Prerequisites:
Similarity of triangles (definition)
Basic Proportionality Theorem (proof)
Alternate angle property (proof)
SAS congruence (proof)
Proof:
Let there be two triangles \triangle ABC and \triangle DEF, such that \angle A = \angle D, \angle B = \angle E and \angle C = \angle F.
We need to show that \triangle ABC\sim\triangle DEF. For this draw a line PQ, where P and Q lies on the lines DE and DF respectively, such that AB = DP and AC = DQ.
In \triangle ABC and \triangle DPQ,
\qquad\quad AB = DP\qquad\qquad\qquad\qquad\text{(by construction)}\\ \qquad\quad AC = DQ\qquad\qquad\qquad\qquad\text{(by construction)}\\ \qquad\quad\angle A = \angle D\qquad\qquad\qquad\qquad\:\!\text{(given)}
Hence, \triangle ABC\cong\triangle DPQ by SAS rule.
Therefore, by CPCTC,
\;\qquad\quad\angle B = \angle DPQ
But, \;\quad\angle B = \angle E\qquad\qquad\qquad\qquad\text{(given)}
Hence, \;\angle DPQ = \angle E
Thus, by alternate angle property, PQ \parallel EF.
Now using Basic Proportionality theorem in \triangle DEF,
\qquad\quad\dfrac{PE}{DP} = \dfrac{QF}{DQ}\\[12pt] \Rightarrow\quad\;\;\dfrac{PE}{DP} + 1 = \dfrac{QF}{DQ} + 1\\[12pt] \Rightarrow\quad\;\;\dfrac{DP + PE}{DP} = \dfrac{DQ + QF}{DQ} \\[12pt] \Rightarrow\quad\;\;\dfrac{DE}{DP}= \dfrac{DF}{DQ}\\[12pt] \Rightarrow\quad\;\;\dfrac{DE}{AB} = \dfrac{DF}{AC}\qquad\qquad\qquad\qquad\text{(by construction)}
Similarly,
\qquad\quad\dfrac{DE}{AB}= \dfrac{EF}{BC}
Hence,
\qquad\quad\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}
Thus, \triangle ABC\sim\triangle DEF by the definition of similarity of triangles.
Recommended:
SSS similarity
Midpoint Theorem
Angle Bisector Theorem
Very helpful
ReplyDelete