Theorem: Bisector of an angle of a trinagle divides the opposite sides in the ratio of the sides containing the angle.
Prerequisites:
Basic Proportionality Theorem (proof)
Alternate angles property (proof)
Corresponding angles property (proof)
Converse of Isosceles Triangle Theorem (proof)
Proof:
Let ABC be a triangle with AD being the bisector of $\angle A$, meeting BC at D. We need to show that:
$\qquad\quad\dfrac{BD}{DC} = \dfrac{AB}{AC}$
For this, let us draw CE $\parallel$ DA to meet the extended BA at C. Since CE $\parallel$ DA,
$\therefore\quad\;\;\;\angle CAD = \angle ACE\qquad\qquad\quad\text{(Alternate angles)}\qquad\qquad\qquad\qquad\qquad\;\;\:\cdots\text{$(1)$}\\[6pt]
\text{Also, }\;\:\!\angle BAD = \angle AEC\qquad\quad\qquad\text{(Corresponding angles)}\qquad\qquad\qquad\qquad\;\;\cdots\text{$(2)$}\\[6pt]
\text{But, }\;\;\angle BAD = \angle CAD\quad\qquad\qquad\:\!\:\!\!\text{(As AD bisects $\angle A$)}\\[6pt]
\therefore\quad\;\;\;\angle ACE = \angle AEC\quad\qquad\!\:\qquad\text{(from $(1)$ and $(2)$)}\\[6pt]
\Rightarrow\quad\;\; AC = AE\qquad\qquad\qquad\qquad\text{(Converse of Isosceles Triangle Theorem)}\quad\cdots\text{$(3)$}$
Now, in $\triangle BCE$, DA $\parallel$ CE. Thus, by Basic Proportionality Theorem,
$\qquad\quad\dfrac{BD}{DC} = \dfrac{BA}{AE}\\[8pt]
\Rightarrow\quad\;\;\dfrac{BD}{DC} = \dfrac{AB}{AC}\qquad\qquad\qquad\;\;\text{(from $(3)$)}$
Q.E.D.
No comments:
Post a Comment