Processing math: 0%

Euclidean Polynomial Division

Theorem: Given two polynomials f(x) and g(x), with g(x) \neq 0, there exists unique polynomials q(x) and r(x) such that f(x)=q(x)g(x)+r(x) with deg\big(r (x)\big) < deg\big(g(x)\big).

Proof:

Existence:
Let \quad f(x) = a_{n}x^n + a_{n-1}x^{n-1} + \cdots + a_{0}x^0
and \quad g(x) = b_{m}x^m + b_{m-1}x^{m-1} + \cdots + b_{0}x^0

If \quad n<m
Then take q(x) = 0 and r(x) = f(x)
Hence f(x)=q(x)g(x)+r(x) with deg\big(r(x)\big) = n < deg\big(g(x)\big).

If \quad n\geq m
Let \;\;q_{1}(x) = \dfrac{a_{n}}{b_{m}}x^{n-m}

Then r_{1}(x) = f(x) - q_{1}(x)g(x)

Now, if deg\big(r_{1}(x)\big)< deg\big(g(x)\big), then r(x) = r_{1}(x) and q(x) = q_{1}(x). Otherwise:

\qquad\quad r_{1}(x) = f(x) - q_{1}(x)g(x) = c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \cdots + c_{0}x^0

Take \quad q_{2}(x) = q_{1}(x) + \dfrac{c_{n-1}}{b_{m}}x^{n-m-1}

This procedure can be continued till degree of f(x) - q_{k}(x)g(x) < m. This value of q_{k}(x) = q(x) and corresponding r_{k}(x) = f(x) - q_{1}(x)g(x) = r(x) with deg\big(r(x)\big) < n = deg\big(g(x)\big).

Uniqueness:
If possible, let there exist two sets of polynomials q_{1}(x), r_{1}(x) and q_{2}(x), r_{2}(x) \left(q_{1}(x)\neq q_{2}(x)\text{ and } r_{1}(x)\neq r_{2}(x)\right) such that f(x)=q_{1}(x)g(x)+r_{1}(x) and f(x)=q_{2}(x)g(x)+r_{2}(x) with deg\big(r_{1}(x)\big)< deg\big(g(x)\big) and deg\big(r_{2}(x)\big)< deg\big(g(x)\big).

\therefore\quad\;\; f(x)=q_{1}(x)g(x)+r_{1}(x) = q_{2}(x)g(x)+r_{2}(x)

\Rightarrow\quad\;\; \left(q_{1}(x) - q_{2}(x)\right)g(x) + \left(r_{1}(x)-r_{2}(x)\right) = 0

\Rightarrow\quad\;\; \left(q_{1}(x) - q_{2}(x)\right)g(x) = \left(r_{1}(x)-r_{2}(x)\right)

Since, deg\big(g(x)\big) = n, therefore, degree of LHS >n. But the degree of RHS<n. Hence there is a contradiction. Therefore q(x) and r(x) are unique.


Recommended:
Polynomial Remainder Theorem
Factor Theorem
Factor representation of polynomials

No comments:

Post a Comment