prerequisites:
Isosceles triangle theorem (proof)
Proof:
Let $\triangle ABC$ be a triangle with the given side lengths. If possible, let $\triangle A'BC$ be another triangle such that A'B = AB and A'C = AC. Join the points A and A' by a straight line.
Now in $\triangle ABA'$,
$\qquad\quad AB = A'B$
Hence $\triangle ABA'$ is an isosceles triangle. Thus, by the isosceles triangle theorem,
$\qquad\quad\!\!\angle BAA' = \angle BA'A$
$\therefore\quad\;\;\alpha + \beta = \delta$
$\therefore\quad\;\;\delta > \beta\qquad\qquad\qquad\qquad\qquad\cdots\text{(1)}$
Similarly, in $\triangle ACA'$,
$\qquad\quad AC = A'C$
Hence $\triangle ACA'$ is an isosceles triangle. Thus, by the isosceles triangle theorem,
$\qquad\quad\!\!\angle CAA' = \angle CA'A$
$\therefore\quad\;\;\beta = \delta + \gamma $
$\therefore\quad\;\;\delta < \beta$
But this contradicts $(1)$.
Hence, it is not possible to construct a distinct triangle $\triangle A'BC$.
Thus, the triangle $\triangle ABC$ is unique.
Recommended:
Unique SAS triangle
Unique RHS triangle
SSS congruence
No comments:
Post a Comment