Processing math: 0%

Cauchy Sequence

Definition: Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. It can be defined for various spaces, such as:

For real numbers, a sequence \langle x_n\rangle of real numbers, such that:

\qquad\quad\langle x_n\rangle = x_1, x_2, x_3, \cdots where, x_1, x_2, x_3, \cdots\;\in\;\mathbb{R}

is a Cauchy sequence, if for every positive real number \epsilon, \exists  an N\;\in\;\mathbb{N}, such that

\qquad\quad |x_n - x_m| < \epsilon \;\;\forall\;\; n, m\;\geq\; N

Similarly, for rational numbers, a sequence \langle x_n\rangle of rational numbers, such that:

\qquad\quad\langle x_n\rangle = x_1, x_2, x_3, \cdots where, x_1, x_2, x_3, \cdots\;\in\;\mathbb{Q}

is a Cauchy sequence, if for every positive rational number \epsilon, \exists  an N\;\in\;\mathbb{N}, such that

\qquad\quad |x_n - x_m| < \epsilon \;\;\forall\;\; n, m\;\geq\; N


For example:

\textrm{If}\;\;\;\quad \langle x_n\rangle =\left\{\dfrac{1}{n}\;\big|\;\; n\;\in\;\mathbb{Z}\right\}\\ \begin{align}\textrm{Then,}\; |x_n - x_m| &= \left| \dfrac{1}{n} - \dfrac{1}{m}\right|\\[6pt] & < \dfrac{1}{n} \text{&} \dfrac{1}{m}\end{align}

Choosing:
\begin{align}\qquad\quad & N > \dfrac{1}{\epsilon}\\ \Rightarrow\quad\;\; &\dfrac{1}{N} < \epsilon\\ \therefore\quad\;\;\; &|x_n - x_m|\;\;< \; \dfrac{1}{n} \text{&} \dfrac{1}{m} < \;\epsilon\;\;\forall\;\; n, m\;\geq\; N \;\left(\textrm{for}\; N > \dfrac{1}{\epsilon}\right) \end{align}

Hence, \langle x_n\rangle =\left\{\dfrac{1}{n}\;\big|\;\; n\;\in\;\mathbb{Z}\right\} is a Cauchy sequence.

No comments:

Post a Comment