Theorem: Roots of a quadratic equation ax^2+bx+c=0 with a \neq 0 are given by \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}.
Prerequisites:
(a+b)^2=a^2+b^2+2ab (proof)
Proof:
Given equation is:
\qquad \quad ax^2+bx+c=0
Dividing the whole equation by a:
\qquad \quad x^2+\dfrac{b}{a}x+\dfrac{c}{a}=0
Adding and subtracting \dfrac{b^2}{4a^2}:
\qquad \quad \left(x^2+\dfrac{b}{a}x+\frac{b^2}{4a^2}\right)-\dfrac{b^2}{4a^2}+\dfrac{c}{a}=0
Using (a+b)^2=a^2+b^2+2ab, equation can be rewritten as:
\qquad \quad \left(x + \dfrac{b}{2a}\right)^2 -\dfrac{b^2}{4a^2}+\dfrac{c}{a}=0\\
\Rightarrow\quad\;\;\begin{align}\left(x + \dfrac{b}{2a}\right)^2 &= \dfrac{b^2}{4a^2}-\dfrac{c}{a}\\
&= \dfrac{b^2 - 4ac}{4a^2}\end{align}
Taking Square root on both sides:
\Rightarrow\quad \left(x + \dfrac{b}{2a}\right)= \pm\dfrac{\sqrt{b^2 - 4ac}}{2a}\\
\Rightarrow\quad\;\; x = \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}
Hence the result
No comments:
Post a Comment