Processing math: 0%

Quadratic Formula

Theorem: Roots of a quadratic equation ax^2+bx+c=0 with a \neq 0 are given by \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}.

Prerequisites:
(a+b)^2=a^2+b^2+2ab (proof)

Proof:

Given equation is:

\qquad \quad ax^2+bx+c=0

Dividing the whole equation by a:

\qquad \quad x^2+\dfrac{b}{a}x+\dfrac{c}{a}=0

Adding and subtracting \dfrac{b^2}{4a^2}:

\qquad \quad \left(x^2+\dfrac{b}{a}x+\frac{b^2}{4a^2}\right)-\dfrac{b^2}{4a^2}+\dfrac{c}{a}=0

Using (a+b)^2=a^2+b^2+2ab, equation can be rewritten as:

\qquad \quad \left(x + \dfrac{b}{2a}\right)^2 -\dfrac{b^2}{4a^2}+\dfrac{c}{a}=0\\ \Rightarrow\quad\;\;\begin{align}\left(x + \dfrac{b}{2a}\right)^2 &= \dfrac{b^2}{4a^2}-\dfrac{c}{a}\\ &= \dfrac{b^2 - 4ac}{4a^2}\end{align}

Taking Square root on both sides:

\Rightarrow\quad \left(x + \dfrac{b}{2a}\right)= \pm\dfrac{\sqrt{b^2 - 4ac}}{2a}\\ \Rightarrow\quad\;\; x = \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

Hence the result

No comments:

Post a Comment