Theorem: log_{a_1}{(a_0)}\;log_{a_2}{(a_1)}\cdots log_{a_0}{(a_n)} = 1
Prerequisites:
Change of base property of log (proof)
Proof:
\qquad\quad LHS = log_{a_1}{(a_0)}\;log_{a_2}{(a_1)}\cdots log_{a_0}{(a_n)}
Using change of base property, each term can be converted to base a_0:
\therefore\quad\;\;\text{LHS} = \dfrac{log_{a_0}{(a_0)}}{log_{a_0}{(a_1)}}\dfrac{log_{a_0}{(a_1)}}{log_{a_0}{(a_2)}}\cdots \dfrac{log_{a_0}{(a_{n-1})}}{log_{a_0}{(a_n)}}\dfrac{log_{a_0}{(a_n)}}{log_{a_0}{(a_0)}}
Since denominator of each term cancels with the numerator of each successive term,
\therefore\quad\;\;\text{LHS} = 1
Hence the result.
Recommended:
Log of product
Log of powers
Change of base property
No comments:
Post a Comment