Definition: a^x is defined as:
1) For x\;\in\mathbb{Z^+}:
\qquad\quad a^x = \underbrace{(a.a.a.....a)}_\text{$x \text{ times}$}\\[6pt]
\qquad\quad a^{-x} = \dfrac{1}{a^x}
\;\;\;For a>0,\\[6pt]
\text{If}\;\;\quad\quad y^{x} = a\\
\text{Then,} \quad a^{1/x} = y
2) For x\;\in\mathbb{Q}, then x = p/q, where, p, q\;\in\mathbb{Z^+}
\;\;\;For a>0,\\[6pt]
\text{If}\;\;\quad\quad\;\; a^p = b^q\\[3pt]
\text{Then,} \quad a^{\tfrac{p}{q}} = b
3) For x\;\in\mathbb{R} and a>0:
\;\;\; a^x for irrational numbers is defined in a way so as to have the continuous exponential function.
No comments:
Post a Comment